Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7891, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036500

RESUMO

Layered thio- and seleno-phosphate ferroelectrics, such as CuInP2S6, are promising building blocks for next-generation nonvolatile memory devices. However, because of the low Curie point, the CuInP2S6-based memory devices suffer from poor thermal stability (<42 °C). Here, exploiting the electric field-driven phase transition in the rarely studied antiferroelectric CuCrP2S6 crystals, we develop a nonvolatile memristor showing a sizable resistive-switching ratio of ~ 1000, high switching endurance up to 20,000 cycles, low cycle-to-cycle variation, and robust thermal stability up to 120 °C. The resistive switching is attributed to the ferroelectric polarization-modulated thermal emission accompanied by the Fowler-Nordheim tunneling across the interfaces. First-principles calculations reveal that the good device performances are associated with the exceptionally strong ferroelectric polarization in CuCrP2S6 crystal. Furthermore, the typical biological synaptic learning rules, such as long-term potentiation/depression and spike amplitude/spike time-dependent plasticity, are also demonstrated. The results highlight the great application potential of van der Waals antiferroelectrics in high-performance synaptic devices for neuromorphic computing.

2.
ACS Appl Mater Interfaces ; 12(1): 1270-1279, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31822058

RESUMO

In recent years, it is urgent and challenging to fabricate highly sensitive and selective gas sensors for breath analyses. In this work, Sr-doped cubic In2O3/rhombohedral In2O3 homojunction nanowires (NWs) are synthesized by one-step electrospun technology. The Sr doping alters the cubic phase of pure In2O3 into the rhombohedral phase, which is verified by the high-resolution transmittance electron microscopy, X-ray diffraction, and Raman spectroscopy, and is attributable to the low cohesive energy as calculated by the density functional theory (DFT). As a proof-of-concept of fatty liver biomarker sensing, ethanol sensors are fabricated using the electrospun In2O3 NWs. The results show that 8 wt % Sr-doped In2O3 shows the highest ethanol sensing performance with a high response of 21-1 ppm, a high selectivity over other interfering gases such as methanol, acetone, formaldehyde, toluene, xylene, and benzene, a high stability measured in 6 weeks, and also a high resistance to high humidity of 80%. The outstanding ethanol sensing performance is attributable to the enhanced ethanol adsorption by Sr doping as calculated by DFT, the stable rhombohedral phase and the preferred (104) facet exposure, and the formed homojunctions favoring the electron transfer. All these results show the effective structural modification of In2O3 by Sr doping, and also the great potency of the homojunction Sr-doped In2O3 NWs for highly sensitive, selective, and stable breath ethanol sensing.

3.
Nanoscale Res Lett ; 14(1): 374, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823089

RESUMO

High concentration ozone can damage greatly to the respiratory, cardiovascular systems, and fertility of people, and catalytic decomposition is an important strategy to reduce its harm. However, it remains a challenge to develop efficient ozone decomposition catalysts with high efficiency. In this study, p- and n-type silicon nanowires (Si NWs) are fabricated by wet chemical etching method and are firstly applied to catalytic decompose ozone at room temperature. The p-type Si NWs exhibit 90% ozone (20 ppm O3/air) decomposition efficiency with great stability, which is much better than that of n-type Si NWs (50%) with same crystal orientation, similar diameter and specific surface area. The catalytic property difference is mainly attributed to the more delocalization holes in the p-type Si NWs, which can accelerate the desorption of ozone decomposition intermediates (i.e., adsorbed oxygen species).

4.
Nanoscale Res Lett ; 14(1): 97, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30874917

RESUMO

Although significant developments have been made in the low-concentration formaldehyde monitoring in indoor air by using gas sensors, they still suffer from insufficient performance for achieving ppb-level detection. In this work, <100> oriented Si nanowires (SiNWs) with high specific surface area were prepared via metal-assisted chemical etching method (MACE), and then were uniformly coated with graphene oxide (GO) followed by the subsequent reductive process in H2/Ar atmosphere at 800 °C to obtain reduced graphene oxide (RGO). The RGO coating (RGO@n-SiNWs) obviously enhances SiNWs sensitivity to low-concentration formaldehyde, benefiting from the increased specific surface area, the sensitization effect of RGO, and the formation of p-n junction between SiNWs and RGO. Specifically, RGO@n-SiNWs exhibits a high response of 6.4 to 10 ppm formaldehyde at 300 °C, which is about 2.6 times higher than that of pristine SiNWs (~ 2.5). Furthermore, the RGO@n-SiNWs show a high response of 2.4 to 0.1 ppm formaldehyde which is the largest permissive concentration in indoor air, a low detection limit of 35 ppb obtained by non-linear fitting, and fast response/recovery times of 30 and 10 s. In the meanwhile, the sensor also shows high selectivity over other typical interfering gases such as ethanol, acetone, ammonia, methanol, xylene, and toluene, and shows a high stability over a measurement period of 6 days. These results enable the highly sensitive, selective, and stable detection of low-concentration formaldehyde to guarantee safety of indoor environment.

5.
Nanomicro Lett ; 11(1): 63, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34138003

RESUMO

Metallic Sn has provoked tremendous progress as an anode material for sodium-ion batteries (SIBs). However, Sn anodes suffer from a dramatic capacity fading, owing to pulverization induced by drastic volume expansion during cycling. Herein, a flexible three-dimensional (3D) hierarchical conductive network electrode is designed by constructing Sn quantum dots (QDs) encapsulated in one-dimensional N,S co-doped carbon nanofibers (NS-CNFs) sheathed within two-dimensional (2D) reduced graphene oxide (rGO) scrolls. In this ingenious strategy, 1D NS-CNFs are regarded as building blocks to prevent the aggregation and pulverization of Sn QDs during sodiation/desodiation, 2D rGO acts as electrical roads and "bridges" among NS-CNFs to improve the conductivity of the electrode and enlarge the contact area with electrolyte. Because of the unique structural merits, the flexible 3D hierarchical conductive network was directly used as binder- and current collector-free anode for SIBs, exhibiting ultra-long cycling life (373 mAh g-1 after 5000 cycles at 1 A g-1), and excellent high-rate capability (189 mAh g-1 at 10 A g-1). This work provides a facile and efficient engineering method to construct 3D hierarchical conductive electrodes for other flexible energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...